

VCCI-CISPR 32:2016

TEST REPORT

For

USB hub

MODEL NUMBER: Expand Bamboo(XNB), Expand(XN)

REPORT NUMBER: 4791839787.1-3-EMC-1

ISSUE DATE: August 6, 2025

Prepared for

Flashbay Electronics
Building2, Jixun Industrial Park, Xinjiao, Dong'ao Village, Shatian Town, Huiyang
District, Huizhou City, Guangdong Province, P.R.China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Room 101, Building 2, No.4, Information Road, Songshan Lake, Dongguan, Guangdong, China

Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

REPORT NO.: 4791839787.1-3-EMC-1

Page 2 of 32

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	August 6, 2025	Initial Issue	

REPORT NO.: 4791839787.1-3-EMC-1 Page 3 of 32

Summary of Test Results

Emission						
Standard	Test Item	Limit	Result			
	Conducted emissions (AC mains power ports)	Clause 5	Pass			
VCCI-CISPR 32:2016	Radiated emissions below 1GHz	Clause 5	Pass			
	Radiated emissions above 1GHz	Clause 5	Pass (Note 1)			

Note:

1. If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz; If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz; If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz; If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less.

^{*}This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

^{*}The measurement result for the sample received is <Pass> according to <VCCI-CISPR 32:2016> when <Simple Acceptance> decision rule is applied.

CONTENTS

1.	ATTES	TATION OF TEST RESULTS	5
2.	TEST N	METHODOLOGY	6
3.	FACILI	TIES AND ACCREDITATION	6
4.	CALIBI	RATION AND UNCERTAINTY	7
4	4.1.	MEASURING INSTRUMENT CALIBRATION	7
4	1.2.	MEASUREMENT UNCERTAINTY	7
5.	EQUIP	MENT UNDER TEST	8
5	5.1.	DESCRIPTION OF EUT	8
5	5.2.	TEST MODE	8
5	5.3.	EUT ACCESSORY	8
É	5.4.	SUPPORT UNITS FOR SYSTEM TEST	8
6.	MEASU	JRING EQUIPMENT AND SOFTWARE USED	10
7.	EMISSI	ON TEST	11
7	7.1.	CONDUCTED EMISSIONS (AC MAINS POWER PORTS)	11
7	7.2.	RADIATED EMISSIONS BELOW 1GHZ	17
7	7.3.	RADIATED EMISSIONS ABOVE 1GHZ	21
ΑP	PENDIX:	PHOTOGRAPHS OF TEST CONFIGURATION	25
۸ D	DENIDIY.	DUOTOGDADUS OF THE ELIT	27

REPORT NO.: 4791839787.1-3-EMC-1

Page 5 of 32

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Flashbay Electronics

Address: Building2, Jixun Industrial Park, Xinjiao, Dong'ao Village, Shatian

Town, Huiyang District, Huizhou City, Guangdong Province,

P.R.China

Manufacturer Information

Company Name: Flashbay Electronics

Address: Building2, Jixun Industrial Park, Xinjiao, Dong'ao Village, Shatian

Town, Huiyang District, Huizhou City, Guangdong Province,

P.R.China

EUT Information

Operations Manager

EUT Name: USB hub

Model: Expand Bamboo(XNB)

Series Model: Expand(XN)

Brand:

Sample Received Date: June 19, 2025 Sample ID: 8605313

Date of Tested: July 21, 2025 to August 5, 2025

APPLICABLE STANDARDS			
STANDARD	TEST RESULTS		
VCCI-CISPR 32:2016	Pass		

Prepared By: Andy Xieng	Checked By:
Andy Xiong	Kebo Zhang
Engineer Project Associate	Senior Project Engineer
Approved By:	
Stephen Guo	

2. TEST METHODOLOGY

All tests were performed in accordance with the standard VCCI-CISPR 32:2016.

3. FACILITIES AND ACCREDITATION

A2LA (Certificate No.: 4102.01	I))
--------------------------------	----	---

UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA.

FCC (FCC Designation No.: CN1187)

UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules.

Accreditation Certificate

ISED (Company No.: 21320)

UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320 and the test lab Conformity Assessment Body Identifier (CABID) is CN0046.

VCCI (Registration No.: C-20202, G-20240, R-20248 and T-20202)

UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793.

Facility Name:

Chamber E, the VCCI registration No. is G-20240 and R-20248 Shielding Room F, the VCCI registration No. is C-20202 and T-20202

Note:

All tests measurement facilities use to collect the measurement data are located at Room 101, Building 2, No.4, Information Road, Songshan Lake, Dongguan, Guangdong, China.

REPORT NO.: 4791839787.1-3-EMC-1 Page 7 of 32

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Measurement Frequency Range	К	U(dB)
Conducted emissions (AC mains power ports)	0.15MHz - 30MHz	2	3.63
Radiated emissions below 1GHz	30MHz -1GHz	2	4.13
Radiated emissions above 1GHz	1GHz - 18GHz	2	5.64

Note1: This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.

Note 2: According to the standard CISPR 16-4-2, the MU for the Conducted emissions from the AC mains power ports using AMN should not exceed 3.8 in range of 9kHz to 150kHz and 3.4 in range of 150kHz to 30MHz. We have considered the test results containing the value of Ulab (in dB) for the measurement instrumentation actually used for the measurements.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name		USB hub	
Model		Expand Bamboo(XNB)	
Series Model		Expand(XN)	
Model Difference		Their electrical circuit design, layout, components used and internal wiring are identical, only the Appearance structure and model name is different. The sample with model "Expand Bamboo(XNB)" was selected as the main test unit, and the data was recorded in the report	
EUT Classificatio	n	Class B	
Highest Internal Frequency		above108MHz	
Power Supply DC		DC 5V	

5.2. TEST MODE

Test Mode	Description
M01	USB-C1 port 5V/2A output + (USB-C2 port + USB 2.0 port + USB 3.0 Port) Data transfer
M02	USB-C2 port 5V/2A output + (USB-C1 port + USB 2.0 port + USB 3.0 Port) Data transfer
M03	USB 2.0 port 5V/2A output + (USB-C1 port + USB-C2 port + USB 3.0 Port) Data transfer
M04	USB 3.0 port 5V/2A output + (USB-C1 port + USB-C2 port + USB 2.0 Port) Data transfer
M05	USB-C1 port 5V/0.75A output + USB-C2 port 5V/0.75A output + USB 2.0 port 5V/0.75A output + USB 3.0 Port 5V/0.75A output
M06	(USB-C1 port + USB-C2 port + USB 2.0 port + USB 3.0 Port) Data transfer

5.3. EUT ACCESSORY

Note: no accessories.

5.4. SUPPORT UNITS FOR SYSTEM TEST

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Specification	Series No.
E-1	Dummy Load*4	N/A	N/A	N/A	N/A
E-2	USB Disk*4	SanDisk	N/A	USB 3.2	N/A

The following cables were used to form a representative test configuration during the tests.

 Item
 Type of cable
 Shielded Type
 Ferrite Core
 Length

 C-1
 USB cable*4
 Shielded
 NO
 1.0 m

REPORT NO.: 4791839787.1-3-EMC-1 Page 10 of 32

6. MEASURING EQUIPMENT AND SOFTWARE USED

Test Equipment of Conducted emissions (AC mains power ports)							
Equipment Manufacturer Model No. Serial No. Last Cal. Due Date							
EMI Test Receiver	ROHDE & SCHWARZ	ESR3	101961	Sep. 28, 2024	Sep. 27, 2025		
Two-Line V- Network	ROHDE & SCHWARZ	ENV216	101983	Sep. 28, 2024	Sep. 27, 2025		
Test Software for Conducted Emission	Farad	EZ-EMC	Ver.UL-3A1	N/A	N/A		

Test Equipment of Radiated emissions below 1GHz							
Equipment Manufacturer Model No. Serial No. Last Cal. Due Date							
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130960	Jun. 28, 2024	Jun. 27, 2027		
MXE EMI Receiver	KEYSIGHT	N9038A	MY56400036	Sep. 28, 2024	Sep. 27, 2025		
Amplifier	HP	8447F	2944A03683	Sep. 28, 2024	Sep. 27, 2025		
Test Software for Radiated Emission	Farad	EZ-EMC	Ver.UL-3A1	N/A	N/A		

Test Equipment of Radiated emissions above 1GHz							
Equipment	ment Manufacturer Model No. Serial No. Last Cal.						
Signal & Spectrum Analyzer	ROHDE & SCHWARZ	FSV	101696	Dec. 27, 2024	Dec. 26, 2025		
Preamplifier	TDK	PA-02-0118	TRS-305- 00066	Dec. 27, 2024	Dec. 26, 2025		
Horn Antenna	ETS-Lindgren	3117	00213191	Feb.7,2023	Feb.6,2026		
Test Software for Radiated Emission	Tonscend	JS32-RE	5.0.0	N/A	N/A		

Other Instrument						
Equipment Manufacturer Model No. Serial No. Last Cal. Due Date						
Temperature humidity probe	'					
Barometer	Yiyi	Baro	N/A	Oct.10, 2024	Oct.9, 2025	

REPORT NO.: 4791839787.1-3-EMC-1 Page 11 of 32

7. EMISSION TEST

7.1. CONDUCTED EMISSIONS (AC MAINS POWER PORTS)

LIMITS

(a.) Limits of conducted emissions from the AC mains power ports of Class A equipment

Frequency range MHz	Coupling device	Detector type / bandwidth	Class A voltage limits dB(uV)
0.15 to 0.5	AMN	Quasi Peak / 9 kHz	79
0.5 to 30	AIVIIN	Quasi Feak / 3 Ki iz	73
0.15 to 0.5	AMN	Average / 0 kHz	66
0.5 to 30	AIVIN	Average / 9 kHz	60

(b.) Limits of conducted emissions from the AC mains power ports of Class B equipment

Frequency range MHz	Coupling device	Detector type / bandwidth	Class B voltage limits dB(uV)
0.15 to 0.5			66 to 56
0.5 to 5	AMN	Quasi Peak / 9 kHz	56
5 to 30			60
0.15 to 0.5			56 to 46
0.5 to 5	AMN	Average / 9 kHz	46
5 to 30		Avolage / 3 KHZ	50

(c.) Limits of asymmetric mode conducted emissions of Class A equipment

Frequency range MHz	Coupling device	Detector type / bandwidth	Class A voltage limits dB(uV)	Class A current limits dB(uA)
0.15 -0.5	AAN	Quasi Peak / 9 kHz	97 to 87	n/a
0.5 -30	AAN	Quasi Peak / 9 km2	87	n/a
0.15 -0.5	AAN	Average / 9 kHz	84 to 74	n/a
0.5 -30	AAN		74	n/a
0.15 -0.5	Current	Quasi Peak / 9 kHz	N/A	53 to 43
0.5 -30	Probe	Quasi Peak / 9 km2	N/A	43
0.15 -0.5	Current	Average / O kHz	N/A	40 to 30
0.5 -30	Probe	Average / 9 kHz	N/A	30

REPORT NO.: 4791839787.1-3-EMC-1 Page 12 of 32

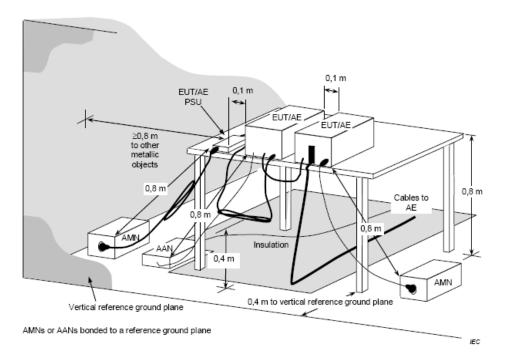
(d.)Limits of asymmetric mode conducted emissions of Class B equipment

Frequency range MHz	Coupling device	Detector type / bandwidth	Class B voltage limits dB(uV)	Class B current limits dB(uA)
0.15 -0.5	AAN	Quasi Peak / 9 kHz	84 to 74	n/a
0.5 -30	AAN	Quasi Feak / 9 kHZ	74	n/a
0.15 -0.5	AAN	Average / O kHz	74 to 64	n/a
0.5 -30	AAN	Average / 9 kHz	64	n/a
0.15 -0.5	Current	Quasi Peak / 9 kHz	n/a	40 to 30
0.5 -30	Probe	Quasi Feak / 9 kHZ	n/a	30
0.15 -0.5	Current	Average / O kHz	n/a	30 to 20
0.5 -30	Probe	Average / 9 kHz	n/a	20

Note:

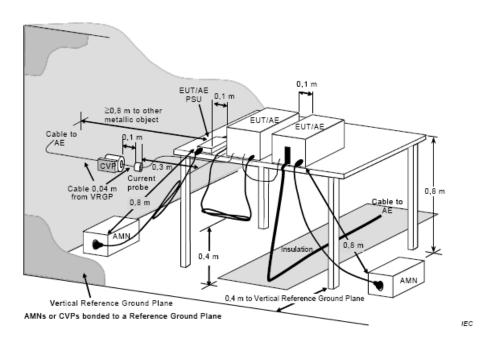
- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

TEST PROCEDURE

- 1. The EUT was placed on the top of a wooden table 0.8 meters above the horizontal ground plane and being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- 2. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- 3. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 4. Cables of hand-operated devices, such as keyboards and mice, shall be placed as for normal used.
- 5. LISN at least 80 cm from nearest part of EUT chassis.
- 6. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode.



TEST SETUP

The 0,8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be ≥0,8 m.

a)Example measurement arrangement for table-top EUT (alternative 1)

The 0,8 m distance specified between EUT/local AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be ≥0,8 m.

b)Example measurement arrangement for table-top EUT measuring in accordance with C.4.1.6.4

REPORT NO.: 4791839787.1-3-EMC-1

Page 14 of 32

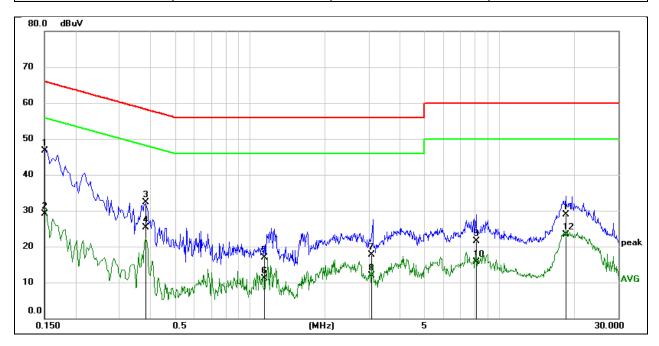
TEST ENVIRONMENT

Temperature	24.2℃	Relative Humidity	57.7%
Atmosphere Pressure	101kPa		

TEST DATE / ENGINEER

Test Date	July 28, 2025	Test By	Deacon Tan

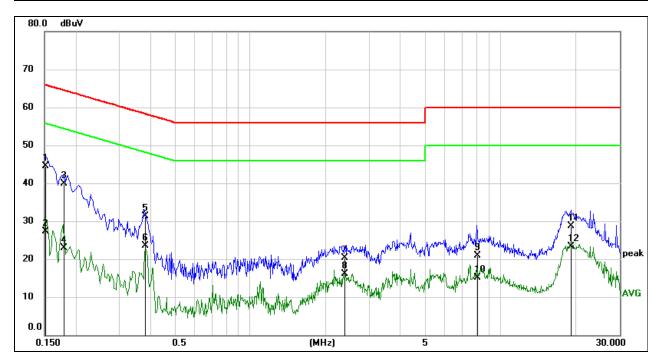
TEST MODE


Pre-test Mode:	M01 ~ M06
Final Test Mode:	M06

Note: All test modes had been tested, but only the worst data recorded in the report.

TEST RESULTS

Test Mode:	M06	Line:	Line
Test Voltage:	AC 100V_50Hz		



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1512	37.02	9.74	46.76	65.93	-19.17	QP
2	0.1512	19.46	9.74	29.20	55.93	-26.73	AVG
3	0.3803	22.66	9.64	32.30	58.27	-25.97	QP
4	0.3803	15.61	9.64	25.25	48.27	-23.02	AVG
5	1.1436	7.28	9.64	16.92	56.00	-39.08	QP
6	1.1436	1.42	9.64	11.06	46.00	-34.94	AVG
7	3.0636	8.02	9.73	17.75	56.00	-38.25	QP
8	3.0636	2.21	9.73	11.94	46.00	-34.06	AVG
9	8.0758	11.69	9.73	21.42	60.00	-38.58	QP
10	8.0758	5.88	9.73	15.61	50.00	-34.39	AVG
11	18.4587	19.19	9.74	28.93	60.00	-31.07	QP
12	18.4587	13.48	9.74	23.22	50.00	-26.78	AVG

Remark: Result = Reading +Correct (Insertion Loss + Cable Loss + Attenuator Factor)
Margin = Result - Limit

Test Mode:	M06	Line:	Neutral
Test Voltage:	AC 100V_50Hz		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1522	34.91	9.64	44.55	65.88	-21.33	QP
2	0.1522	17.74	9.64	27.38	55.88	-28.50	AVG
3	0.1805	30.36	9.64	40.00	64.46	-24.46	QP
4	0.1805	13.34	9.64	22.98	54.46	-31.48	AVG
5	0.3805	21.72	9.64	31.36	58.27	-26.91	QP
6	0.3805	13.87	9.64	23.51	48.27	-24.76	AVG
7	2.4012	10.60	9.64	20.24	56.00	-35.76	QP
8	2.4012	6.45	9.64	16.09	46.00	-29.91	AVG
9	8.1138	11.08	9.73	20.81	60.00	-39.19	QP
10	8.1138	5.40	9.73	15.13	50.00	-34.87	AVG
11	19.2033	19.02	9.74	28.76	60.00	-31.24	QP
12	19.2033	13.65	9.74	23.39	50.00	-26.61	AVG

Remark: Result = Reading +Correct (Insertion Loss + Cable Loss + Attenuator Factor)
Margin = Result - Limit

REPORT NO.: 4791839787.1-3-EMC-1 Page 17 of 32

7.2. RADIATED EMISSIONS BELOW 1GHZ

LIMITS

(a). Limits up to 1 GHz

	Clas	ss A	Class B		
FREQUENCY (MHz)	At 10 m	At 3 m	At 10 m	At 3 m	
	dBμV/m	dBμV/m	dBµV/m	dBμV/m	
30 – 230	40	50	30	40	
230 – 1000	47	57	37	47	

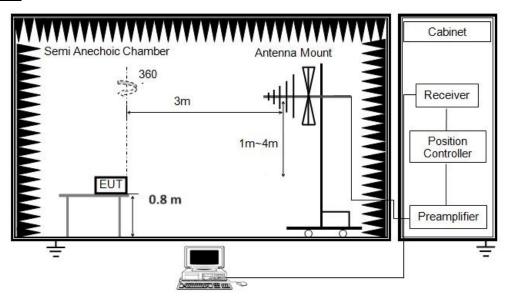
Note:

- (1) The limit for radiated test was performed according to CISPR 32.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBµV/m)=20log Emission level (uV/m).
- (4) If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz. If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz. If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz. If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less.

TEST PROCEDURE

Below 1 GHz and above 30 MHz

The setting of the spectrum analyzer


RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak and QP
Trace	Max hold

- 1. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp was used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 2. The EUT was placed on a turntable with 80 cm above ground.
- 3. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

- 4. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 5. Cables of hand-operated devices, such as keyboards and mice, shall be placed as for normal used.
- 6. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 7. For measurement below 1 GHz, the initial step in collecting Radiated emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

TEST SETUP

Below 1 GHz and above 30 MHz

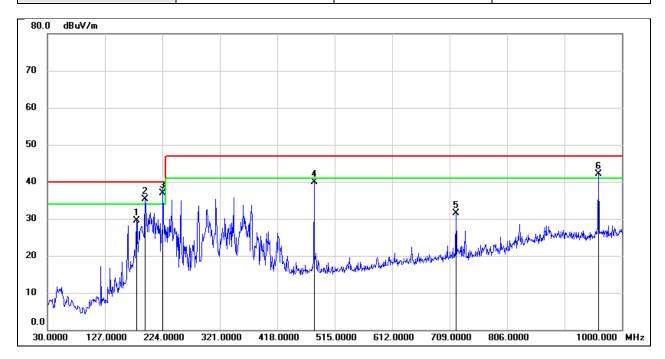
TEST ENVIRONMENT

Temperature	21.5℃	Relative Humidity	61.0%
Atmosphere Pressure	101kPa		

TEST DATE / ENGINEER

Test Date	July 21, 2025	Toot Dv	Stipe Zheng
i rest Date	July 2 1. 2023	Hest By	Sube Zhena

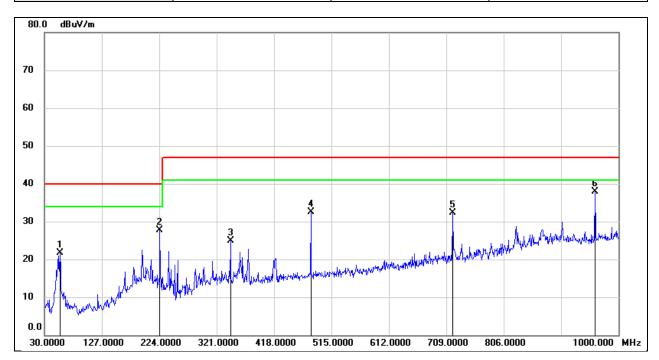
TEST MODE


Pre-test Mode:	M01 ~ M06
Final Test Mode:	M06

Note: All test modes had been tested, but only the worst data recorded in the report.

TEST RESULTS

Test Mode:	M06	Polarity:	Horizontal
Test Voltage:	DC5V		


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	180.3500	41.25	-11.84	29.41	40.00	-10.59	QP
2	194.9000	47.38	-12.13	35.25	40.00	-4.75	QP
3	224.9700	50.21	-13.30	36.91	40.00	-3.09	QP
4	480.0800	47.84	-7.86	39.98	47.00	-7.02	QP
5	719.6700	35.40	-3.95	31.45	47.00	-15.55	QP
6	960.2300	42.74	-0.69	42.05	47.00	-4.95	QP

Note: 1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)

2. Margin = Result - Limit

Test Mode:	M06	Polarity:	Vertical
Test Voltage:	DC5V		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	56.1900	36.59	-14.98	21.61	40.00	-18.39	QP
2	224.9700	40.98	-13.30	27.68	40.00	-12.32	QP
3	344.2800	34.66	-9.75	24.91	47.00	-22.09	QP
4	480.0800	40.36	-7.86	32.50	47.00	-14.50	QP
5	719.6700	36.16	-3.95	32.21	47.00	-14.79	QP
6	960.2300	38.54	-0.69	37.85	47.00	-9.15	QP

Note: 1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor) 2. Margin = Result - Limit

7.3. RADIATED EMISSIONS ABOVE 1GHZ

LIMITS

(a). Limits above 1 GHz

FREQUENCY (MHz)	Class A (at 3	3 m) dBµV/m	Class B (at 3 m) dBµV/m		
PREQUENCY (MINZ)	Peak Avg		Peak	Avg	
1000-3000	76	56	70	50	
3000-6000	80	60	74	54	

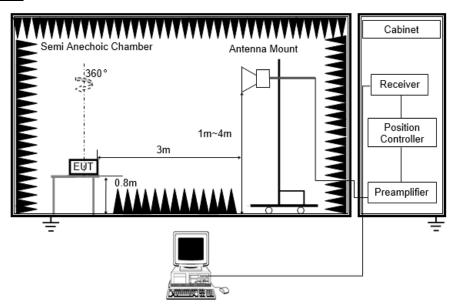
Note:

- (1) The limit for radiated test was performed according to CISPR 32.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBµV/m)=20log Emission level (uV/m).
- (4) If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz. If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz. If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz. If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less.

TEST PROCEDURE

Above 1 GHz

The setting of the spectrum analyzer


RBW	1 MHz
VBW	3 MHz
Sweep	Auto
II IATACTOR	Peak: Peak AVG: RMS
Trace	Max hold

- 1. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 2. The EUT was placed on a turntable with 80 cm above ground.
- 3. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

- 4. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 5. Cables of hand-operated devices, such as keyboards and mice, shall be placed as for normal used.
- 6. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 7. For measurement above 1 GHz, the peak emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the peak limit. If peak result complies with average limit, average result is deemed to comply with average limit.
- 9. The average emission measurement will be measured by the RMS detector and must comply with the average limit.

TEST SETUP

Above 1GHz

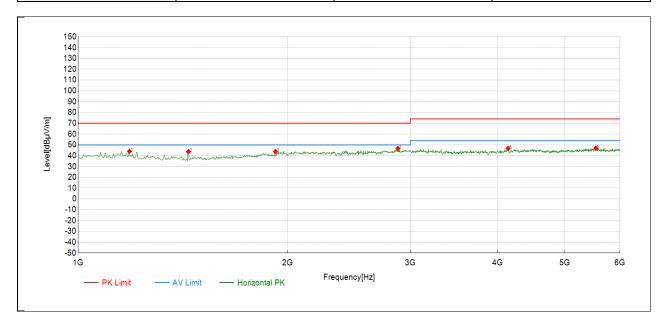
TEST ENVIRONMENT

Temperature	23.0℃	Relative Humidity	65.0%
Atmosphere Pressure	101kPa		

TEST DATE / ENGINEER

Test Date	July 21, 2025	Test By	Andy Xiong
-----------	---------------	---------	------------

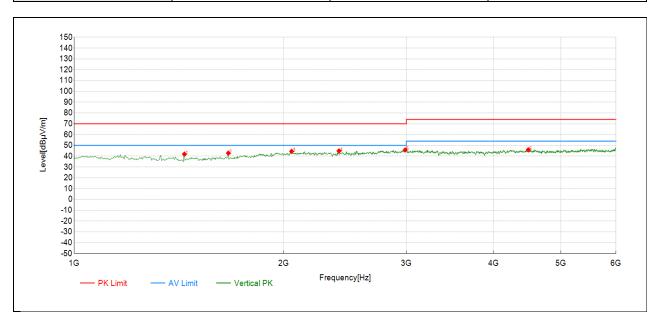
TEST MODE


Pre-test Mode:	M01 ~ M06
Final Test Mode:	M06

Note: All test modes had been tested, but only the worst data recorded in the report.

TEST RESULTS

Test Mode:	M06	Polarity:	Horizontal
Test Voltage:	DC5V		


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1185.09	56.19	-12.14	44.05	70.00	25.95	PK
2	1440.22	56.45	-12.66	43.79	70.00	26.21	PK
3	1920.46	52.38	-8.54	43.84	70.00	26.16	PK
4	2878.44	52.35	-5.69	46.66	70.00	23.34	PK
5	4144.07	50.52	-3.80	46.72	74.00	27.28	PK
6	5539.77	48.68	-1.70	46.98	74.00	27.02	PK

Note: 1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)

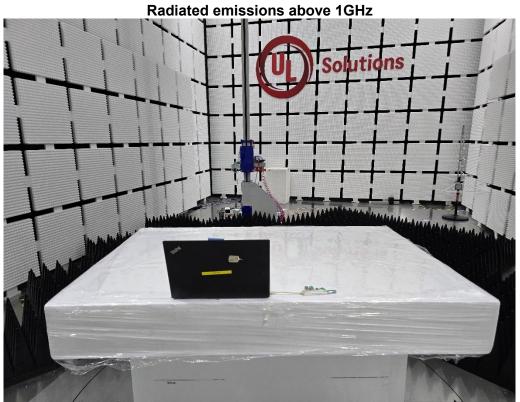
2. Margin = Result - Limit

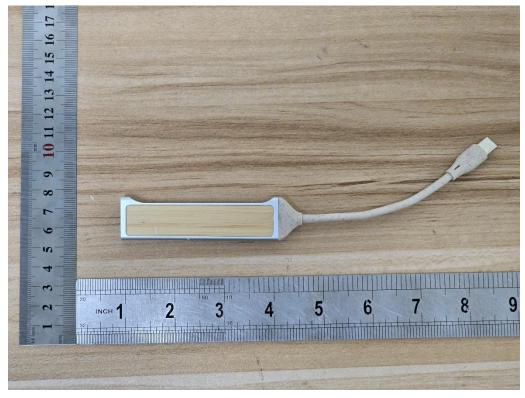
Test Mode:	M06	Polarity:	Vertical
Test Voltage:	DC5V		

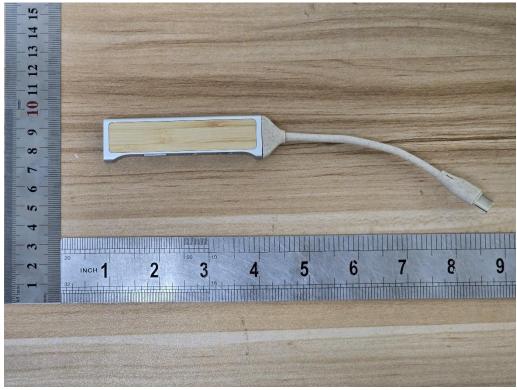
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1440.22	54.62	-12.66	41.96	70.00	28.04	PK
2	1665.33	54.31	-11.45	42.86	70.00	27.14	PK
3	2053.03	52.01	-7.48	44.53	70.00	25.47	PK
4	2400.70	52.34	-7.46	44.88	70.00	25.12	PK
5	2988.49	51.17	-5.36	45.81	70.00	24.19	PK
6	4489.24	49.64	-3.75	45.89	74.00	28.11	PK

Note: 1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)
2. Margin = Result - Limit

APPENDIX: PHOTOGRAPHS OF TEST CONFIGURATION

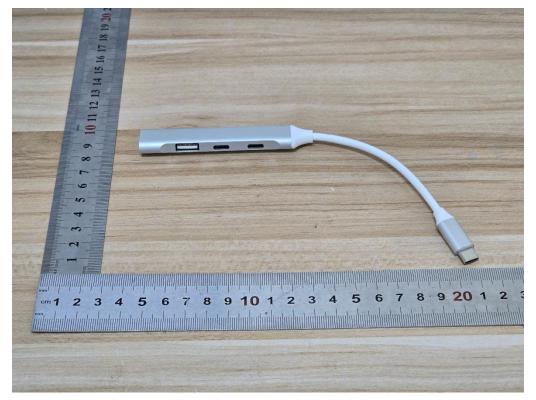

Conducted emissions (AC mains power ports)

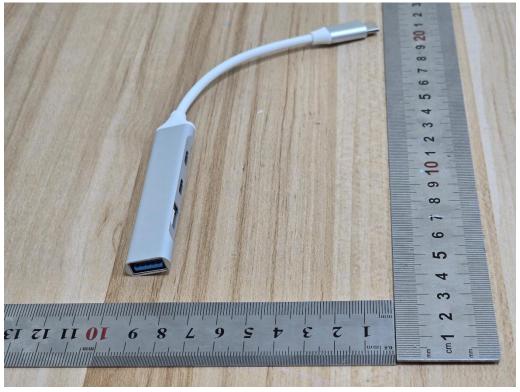




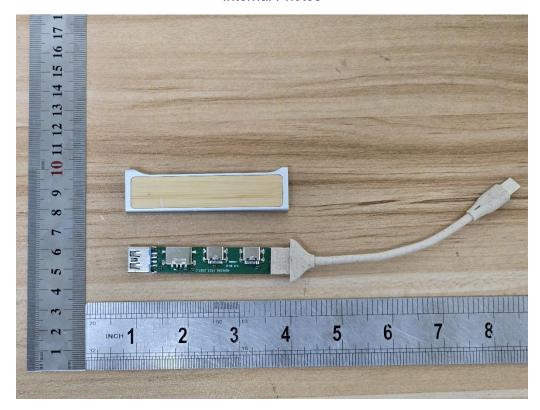
APPENDIX: PHOTOGRAPHS OF THE EUT

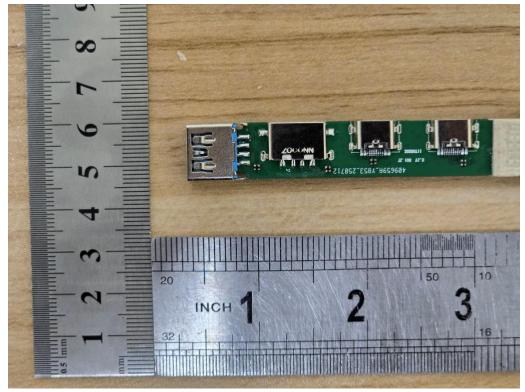
External Photos











Internal Photos

END OF REPORT